

77

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Chapter 7Use Case Diagrams

7
Use Case Diagrams

Use cases are a way to capture system functionality and requirements in UML.
Use case diagrams consist of named pieces of functionality (use cases), the persons
or things invoking the functionality (actors), and possibly the elements respon-
sible for implementing the use cases (subjects).

Use Cases
Use cases represent distinct pieces of functionality for a system, a component, or
even a class. Each use case must have a name which is typically a few words
describing the required functionality, such as View Error Log. UML provides two
ways to draw a use case. The first is an oval with the name of the use case in the
center. Figure 7-1 shows a basic use case.

You can divide a use case’s oval into compartments to provide more detail about
the use case, such as extension points (see “Use Case Extension”), included use
cases (see “Use Case Inclusion”), or the modeling of specific constraints.
Figure 7-2 shows a use case oval with a compartment listing extension points.

However, the oval representation of use cases doesn’t hold up well with detailed
compartments. UML recommends you use the classifier notation if you want to
provide details about a use case. Show the use case as a rectangle, with the use
case oval in the top-right corner. Place the name of the use case in the top, in
bold. You can then divide the classifier into compartments as needed. Typical

Figure 7-1. A simple use case

,ch07.22238 Page 77 Tuesday, May 17, 2005 2:37 PM

78 | Chapter 7: Use Case Diagrams

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

compartment names are extension points and included use cases. Figure 7-3
shows the same use case as in Figure 7-2, but in classifier notation.

UML makes a clear distinction that the term use case strictly applies to the UML
element and its name. Full documentation of a use case is considered an instantia-
tion of the use case. This is a subtle distinction, but it allows you to document a
use case in whatever way best captures the use case’s functionality. You can docu-
ment a use case in a text document, state machine, interaction diagram, activity
diagram, or anything else that conveys the details of the functionality in a mean-
ingful way to your reader.

Actors
A use case must be initiated by someone or something outside of the scope of the
use case. This interested party is called an actor. An actor doesn’t need to be a
human user; any external system or element outside of the use case may trigger
the use case (or be the recipient of use case results) and should be modeled as an
actor. For example, it is very common to model the system clock as an actor that
triggers a use case at a given time or interval.

An actor can have several different representations in UML. The first is a stick
figure with the name of the actor written near the icon (usually right below it).
Figure 7-4 shows an actor icon.

Alternatively, an actor can be shown using the classifier notation. You represent
the actor with a rectangle, with the keyword actor at the top and the name of the
actor in bold immediately below that. Since actors don’t typically have compart-
ments, this representation isn’t used very often. Figure 7-5 shows an actor in
classifier notation.

If it is helpful, you may use custom icons to clearly distinguish different types of
actors. For example, you can show an external database system using a database

Figure 7-2. Use case with a compartment showing extension points

Figure 7-3. Use case in classifier notation

,ch07.22238 Page 78 Tuesday, May 17, 2005 2:37 PM

Actors | 79

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

icon while showing the system administrator as a stick figure. Figure 7-6 shows
exactly this set of actors.

Actor/Use Case Associations

You typically associate an actor with one or more use cases. A relationship
between an actor and a use case indicates the actor initiates the use case, the use
case provides the actor with results, or both. You show an association between an
actor and a use case as a solid line. Conventionally you read use case diagrams
from left to right, with actors initiating use cases on the left and actors that receive
use case results on the right. However, depending on the model or level of
complexity, it may make sense to group actors differently. Figure 7-7 shows an
actor communicating with a use case.

Figure 7-4. An actor using the stick figure representation

Figure 7-5. An actor using classifier notation

Figure 7-6. Actor with a custom icon

Figure 7-7. An actor associated to the Order Item use case

,ch07.22238 Page 79 Tuesday, May 17, 2005 2:37 PM

80 | Chapter 7: Use Case Diagrams

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Though not part of the official UML specification, it is common to see directional
arrows on association lines to indicate who initiates communication with whom.
Note that the arrows don’t necessarily restrict the direction of information flow;
they simply point from the initiator to the receiver of the communication. What
happens after a use case begins execution is specified elsewhere (see “Use Cases”).
Figure 7-8 shows two actors and a use case with directional associations.

System Boundaries

By definition, use cases capture the functionality of a particular subject. Anything
not realized by the subject is considered outside of the system boundaries and
should be modeled as an actor. This technique is very useful in determining the
scope and assignment of responsibilities when designing a system, subsystem, or
component. For example, if while you are modeling an ATM system your design
discussions digress into discussions of the details of the back-end banking system,
a use case model with clearly defined system boundaries would identify the
banking system as an actor and therefore outside the scope of the problem.

You represent system boundaries in a generic sense using a simple rectangle, with
the name of the system at the top. Figure 7-9 shows the system boundaries for the
ATM machine mentioned in the previous paragraph.

Using Actors to Identify Functionality

Actors don’t need to have a one-to-one mapping to physical entities; in fact, they
don’t need to be physical entities at all. UML allows for actors to represent roles
of potential users of a system. For example, the system administrator may be the
only physical user of a system, but that administrator may wear many hats. It may
be helpful to view the system from the perspective of a database administrator,
backup administrator, deployment administrator, and so on. By specifically iden-
tifying the various roles of actors that may use the system, you can often discover
use cases that would have gone unnoticed. Figure 7-10 shows a sample diagram
containing three types of administrators and example use cases.

Figure 7-8. An example of directed associations between actors and a use case

,ch07.22238 Page 80 Tuesday, May 17, 2005 2:37 PM

Actors | 81

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Figure 7-9. A use case diagram showing the system boundaries of an ATM System

Figure 7-10. An example of using specialized versions of an actor to help find required
functionality

,ch07.22238 Page 81 Tuesday, May 17, 2005 2:37 PM

82 | Chapter 7: Use Case Diagrams

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Advanced Use Case Modeling
As it does for other classifiers, UML provides mechanisms for reusing and adding
on to use cases and actors. You can expand an actor’s capabilities or replace entire
use cases using generalization. You can factor out common elements of use cases
using included use cases, or add on to base use cases using use case extension.

Actor and Use Case Generalization

Though not officially mentioned in the specification, actors and use cases can be
generalized like many other classifiers. Actor generalization is typically used to
pull out common requirements from several different actors to simplify modeling.
For example, Figure 7-10 shows several administrators and the use cases they
need to invoke. You may have a Database Administrator, a Backup Administrator,
and a Deployment Administrator, all with slightly different needs. However, the
majority of the needs of the individual actors may overlap. You could factor out a
generic System Administrator actor to capture the common functionality, and
then specialize to identify the unique needs of each actor.

You represent actor generalization like any other classifier; draw a solid line, with
a closed arrow pointing from the specialized actor to the base actor. Figure 7-11
shows the same information as Figure 7-10 but in a much easier-to-read diagram.

Use cases may be generalized as well. Typically use case generalization is used to
express some high-level functional need of a system without going into specifics.
Specializations of a general use case introduce specific functionality. For example,
a generic use case could be Verify Passenger Identity, and specializations of that
use case could be Check Passenger Fingerprint and Verify Passenger's RFID Tag.
It is important to notice that even with use case generalization you should still
discuss functionality, not implementation. You should not have specializations of
a use case for different ways to implement the same functionality, only to repre-
sent different functionality.

You represent use case generalization just like you do actor generalization: using a
solid line, with a closed arrow pointing from the specialized use case to the base
use case. If the general use case represents abstract functionality (meaning it’s a
functional concept but doesn’t actually explain how a user would do something),
you show the name of the use case in italics. Figure 7-12 shows the verification
use cases and their relationships.

Use Case Inclusion

You can factor out common functionality from several use cases by creating a
shared, included use case. Unlike in use case extension (discussed next), the use
case that includes another use case is typically not complete on its own. The
included functionality isn’t considered optional; it is factored out simply to allow
for reuse in other use cases.

You show use case inclusion using a dashed line, with an open arrow (depen-
dency) pointing from the base use case to the included use case. Label the line
with the keyword include. Figure 7-13 shows an example of use case inclusion.

,ch07.22238 Page 82 Tuesday, May 17, 2005 2:37 PM

Advanced Use Case Modeling | 83

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Figure 7-11. Actor generalization, where the System Administrator is the generic base actor
and the lower three are specializations

Figure 7-12. Use case generalization

,ch07.22238 Page 83 Tuesday, May 17, 2005 2:37 PM

84 | Chapter 7: Use Case Diagrams

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Use Case Extension

UML provides the ability to plug in additional functionality to a base use case if
specified conditions are met. For example, if you were modeling a banking appli-
cation, you may have a use case named Open Account that specifies how the user
could create a new account with the bank. You could offer a joint account that
allowed a user to add other people to his account. The joint account functionality
could be captured with a different, use case named Add Joint Member. In this case
the specified condition for the extension is more than one member on the bank
application.

UML clearly specifies that a base use case should be a complete use case on its
own. The extension use cases are typically smaller in scope and represent addi-
tional functionality, so they may not be useful outside of the context of the base
use case.

Any use case you want to extend must have clearly defined extension points. An
extension point is a specification of some point in the use case where an exten-
sion use case could plug in and add functionality. UML doesn’t have a particular
syntax for extension points; they are typically freeform text, or step numbers if the
use case functionality is represented as a numbered list.

Include or Includes?
Often there is disagreement between UML modelers as to whether the proper
keywords are include and extend or includes and extends. One would think the
UML specification would put this to rest. However, as of the UML 2.0 specifica-
tion, the use case section states that the keywords are include and extend, and
then proceeds to show examples using includes and extend! We think it’s safe
to say, that either is acceptable.

Figure 7-13. Use case inclusion

,ch07.22238 Page 84 Tuesday, May 17, 2005 2:37 PM

Advanced Use Case Modeling | 85

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

U
se Case

Diagram
s

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

You list extension points in a use case oval, or in a separate compartment when
using the classifier notation. Figure 7-14 shows a use case with extension points.

You represent a use case extension by showing a dashed line, with an open arrow
(dependency) pointing from the extension use case to the base use case. Label the
line with the keyword extend. Figure 7-15 shows an example of use case
extension.

To provide more detail you may specify where the new functionality plugs into
the base use case by specifying an extension point and a note attached to the
dependency line. Optionally you may specify under what condition the extension
executes, such as applicants > 1. Figure 7-16 shows use case extension with a
note specifying the extension point and the condition to execute the extra
functionality.

When the system encounters an extension point in a use case, any conditions
associated with extension use cases are evaluated. If a condition is met, the corre-
sponding extension functionality is executed. Once all appropriate extension use

Figure 7-14. Oval and classifier notation for a use case with extension points

Figure 7-15. Use case extension

Figure 7-16. Use case extension showing conditions in a note

,ch07.22238 Page 85 Tuesday, May 17, 2005 2:37 PM

86 | Chapter 7: Use Case Diagrams

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

cases have been executed, the base use case continues with the next step in the
original flow.

Use Case Scope
As mentioned previously, a use case is a distinct piece of functionality, meaning it
is of sufficient granularity that the user has accomplished his desired goal. Proper
scoping of use cases is an art, but UML sets several requirements to make the job
a little easier:

• A use case must be initiated by an actor.

• When a use case is considered complete there are no further inputs or out-
puts; the desired functionality has been performed or an error has occurred.

• After a use case has completed, the system is in a state where the use case can
be started again, or the system is in an error state.

One popular rule of thumb is to ask yourself if the user can “go to lunch” after
completing the use case, meaning that a reasonably sized goal has been achieved
by the initiator. For example, Add item to shopping cart is probably not the
larger goal a user intends; Purchase item is likely a better scope. Purchase item

would consist of adding an item to a shopping cart, but would typically have more
functionality such as logging on, entering billing and shipping information, and
confirming the order.

Above all, use cases are intended to convey desired functionality, so the exact
scope of a use case may vary depending on the intended audience and purpose for
modeling.

,ch07.22238 Page 86 Tuesday, May 17, 2005 2:37 PM

